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I. INTRODUCTION

The need for the analysis presented in this report is perhaps best described by Bill Ormsby

(W11) and Jack Carr (ORCA Computer Inc.): “An acoustic, passive multistatic network

(A-PMSN) for situation awareness in support of military and homeland security operations,

such as harbor defense, is needed. The A-PMSN is a prototype sound source location system

initially focused on the detection of small boats and the integration of those detections

into existing track management procedures and operational picture displays. A-PMSN is

designed to operate within a service-oriented architecture for early recognition of significant

acoustic detections obtained from sensors located at known endpoints of a baseline using

time differences of arrivals (TDOAs) of signals. A TDOA is defined to be the difference of

times of arrival of a signal at two separated receivers (sensors).

Using sensors on more than one independent baseline or on one baseline with a track

constraint allows the estimation of the positions of the sources of sounds being detected.

These positions may include those for targets of interest and those for sources of sound not

of interest. The TDOAs will be produced at regular time intervals and converted to estimated

positions. These positions will be used as detections and processed by an associated cross

correlation algorithm to produce tracks. The tracks are the result of the targets moving

from fixed point to fixed point over the span of the data collection. In particular, targets

whose positions fall close to a line and/or close to the arc of a circle are of particular interest

and form the basis for the associated algorithm using the Hough Transform for preliminary

estimates of target positions.”

With a passive multistatic sensor network consisting of a set of commercial FM or acoustic

transmitters, receivers (sensors), and a data processing center with their coordinate locations,

one is interested in locating targets moving in straight lines and/or in circular or possibly

elliptical arcs within a given surveillance area. An appropriate tool to aid in detecting

preliminary estimates of such movements is the Hough Transform. In order to apply the

Hough Transform (HT), N input points (x, y) are needed that are generated by transmitter

responses from a target to receivers (sensors) using TDOAs [3].

Also, two methods are described to determine the (x, y) input points. First, a straight-

forward approach dealing directly with the nonlinearity of the problem is given, followed by

a particular application of Ho-Chan’s method [4].

In Section II, the HT is defined and discussed. In Section III the HT is used to identify

targets made up of straight lines in the plane. Sections IV and V describe how extensions of

the HT can be used to identify targets made up of circular and elliptical arcs, respectively. As

noted above, the required input is a set of possible target Cartesian coordinates. Numerical

examples are given.

1
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Section VI addresses two procedures for finding the possible target coordinates, required

by the HT and its extensions, using TDOAs. Three numerical examples are discussed.

Fortran 95 software has been developed to utilize the procedures noted above.

II. HOUGH TRANSFORM

Consider a straight line L in the xy-plane ( xyp ) with slope m, say

y = m(x− xo ) + yo , m = tanφ, (See Figure 1), (1)

where (xo, yo) refers to a point on L. Let N denote the straight line that passes through the

origin and is perpendicular to L at a unique (xo, yo) as shown in Figure 1. Equation (1), can

be written in terms of the parameters that describe N, namely θ and ρ. The result is

y sin θ + x cos θ = ρ, −π ≤ θ ≤ π, (2)

where θ denotes the angle N makes with the positive x-axis, and ρ specifies the distance

along N from (0, 0) to (xo, yo) . If in (1), (xo, yo) = (0, 0), then ρ = 0.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5
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1.5

2

2.5
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3.5
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4.5

• •

θ

ρ
(xo, yo)

φ

L

N

x

y

L: y sin θ + x cos θ = ρ ≥ 0

− π ≤ θ ≤ π

ρ = (xo2 + yo2)1/2

L ⊥  N at (xo, yo)

Figure 1. Normal Form of the Equation for a Straight Line

Equation (2) is referred to as the “normal equation for L.” It is obtained from (1) by

observing that

φ = θ ± π/2→ m = tanφ = −cos θ/ sin θ . (3)

Hence (1) becomes

y = −(cos θ /sin θ )(x− xo ) + yo (4)

y sin θ + x cos θ = xo cos θ + yo sin θ , (5)

where

ρ = xo cos θ + yo sin θ = ±
√
x2o + y2o , (See Figure1). (6)

2
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It may happen in evaluating ρ from (2) that ρ < 0, in which case π is added to θ if

θ< 0, or π is subtracted from θ if θ> 0, thus reversing the sign of ρ. If ρ = 0 then π is

added to θ if θ < 0. Hence, it is assumed that ρ is always nonnegative. Note, (2) has the

advantage over (1) since no problems are encountered at φ in the vicinity of ±π/2.
Consider an input set of N numerically different points in xyp : M = {Mn} = {(xn, yn);

n = 1, . . . ,N}. Hereafter, elements of M will be designated as Mn points. Let an L− line

denote a straight line in xyp containing at least three Mn points. The HT transforms L to

a point (θ, ρ) in the θρ-plane ( θρp), where the point is taken from the normal form of the

equation for L as described above. At each Mn, a spectrum of straight lines can be drawn

by varying θ in (2). So, each such Mn generates a curve in θρp. If this is done for each of the

N points, the intersection points of the resulting curves in θρp designate which Mns belong

to which L−lines, thus isolating the straight lines that can be generated from the N given

points. Of course, one would look for three or more intersecting curves at a point in θρp.

Figures 2 and 3 illustrate the result for six given Mns. Figure 3 exhibits ρ< 0 and applicable

ρ ≥ 0.
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Figure 2. Given Mns, (xn, yn) , n = 1, . . . , 6, in xyp
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Figure 3. Transforms of Mns in Figure 2 to θρp
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Thus, the HT can be used to isolate sequences of points that lie on straight lines embedded

in a set M of discrete points (xn, yn), n = 1, . . . ,N.

The graphical approach, of using the curve intersections in θρp to find the L−lines, i.e.,

lines in the xyp containing more than two Mns, has the problem, if N is large, that the curve

intersections in θρp are obscure; hence, difficult to read. In such cases, if one wanted the

L−lines containing a large number of Mns, it could be difficult to separate them graphically.

In addition, keep in mind that every three Mns generate an intersection of two curves in the

θρp.

Our approach, which uses no graphing, is to begin by finding and itemizing the Mns

belonging to each L− line, starting with the line(s) with the largest number of Mns and

listing the remaining lines in decreasing order of their number of Mns. More precisely, let

Lk denote the kth L−line obtained from the HT with k = 1, 2, . . . ,K, and let Nk denote the

total number of Mns contained in Lk. Moreover, the K Lks are ordered in decreasing order

of Nk, such that N1 ≥ N2 ≥, . . . ,NK ≥ 3.

In Figure 2, the Mns are indicated by small numbered circles. Table 1 lists the coordinates

of these points.

Table 1. Listing of Mns of Figure 2

[ x1, x2, x3, x4, x5, x6 ] = [ 1, 5, 6, 3, 0, 7 ]

[ y1, y2, y3, y4, y5, y6 ] = [ 1, 7, 1, 4, 7, 10 ]

Thus, the third Mn would be M3 = (x3, y3) = (6, 1).

Using Figures 2 and 3 as an example, there will clearly be two Lk lines, K = 2. So, the

output would be as shown in Table 2.

Table 2. Listing Output Two L−lines
L1→ N1 = 4, Mns on L1→ M1,M2,M4,M6

L2→ N2 = 3, Mns on L2→ M3,M4,M5

The actual mechanics for generating software to determine the L− lines, Lk, with their

Mns, is explained below using the example. Every two Mns determine a straight line with an

associated unique θ and ρ that satisfy (2); then a θ and ρ are determined systematically for

all possible pairs of Mns. Those pairs (at least two) that have the same θ and ρ determine

an L− line passing through those Mns (as discussed with the intersections of curves in

θρp where a θ and ρ are associated with each intersection). Beginning the process, Mns

one and two would generate θ1,2 and ρ1,2, and Mns i and j would generate θi, j and ρi, j

with i < j. In matrix notation, let ( θi, j ) and ( ρi, j ) denote upper triangular matrices. We

use a four-quadrant inverse tangent routine, atan2(y, x), such that −π < atan2(y, x) ≤ π.

Throughout, the subscripts i, j are constrained to

4
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i < j, i = 1, 2, . . . , (N− 1), j = 2, 3, . . . ,N. (7)

With ε discussed at the end of this section, the matrix elements are generated accordingly:

If |xi − xj| < ε max(|xi|, |xj|, 1) and |yi − yj| ≥ ε max(|yi|, |yj|, 1), then

ρi, j = |xi| and θi, j =

{
0, if xi ≥ 0,

π, if xi < 0.
(8)

Else, if |yi − yj| < ε max(|yi|, |yj|, 1) and |xi − xj| ≥ ε max(|xi|, |xj|, 1), then

ρi, j = |yi| and θi, j =

{
π/2, if yi ≥ 0,

−π/2, if yi < 0.
(9)

Else, if (|xi − xj| ≥ ε max(|xi|, |xj|, 1) and |yi − yj| ≥ ε max(|yi|, |yj|, 1)), then

θi, j =

{
tan−1[ (xi − xj)/(yj − yi) ], i < j,

0, i ≥ j,
(10)

ρi, j =

{
xi cos θi, j + yi sin θi, j , i < j,

0, i ≥ j.
(11)

If ρi, j > 0, then
ρi, j = ρi, j , θi, j = θi, j , (12)

else, if ρi, j = 0, then

ρi, j = ρi, j and θi, j =

{
θi, j , if θi, j ≥ 0,

θi, j + π, if θi, j < 0,
(13)

else, if ρi, j < 0, then

ρi, j = − ρi, j and θi, j =

{
θi, j + π, if θi, j ≤ 0,

θi, j − π, if θi, j > 0.
(14)

Referring to the example involving Figures 2 and 3, we obtain

{ θi, j } =


0 −.5880 1.5708 −.5880 .1651 −.5880
0 0 .1651 −.5880 1.5708 −.5880
0 0 0 .7854 .7854 −.1107
0 0 0 0 .7854 −.5880
0 0 0 0 0 1.9757

 (15)

{ ρi, j } =


0 .2774 1 .2774 1.1508 .2774

0 0 6.0828 .2774 7 .2774

0 0 0 4.9497 4.9497 5.8527

0 0 0 0 4.9497 .2774

0 0 0 0 0 6.4340

 (16)

5
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Note that θ5, 6 = tan−1[(0 − 7)/(10 − 7)] = −1.165904 with ρ5, 6 = y5 sin(−1.165904) =

−6.43402. Thus, (14) holds and to insist on ρ5, 6 > 0, ρ5, 6 = −ρ5,6 and π is added to θ5, 6, so

that θ5, 6 = θ5, 6 + π = 1.9757, as noted in (15). The software which generates the matrices

in (15) and (16) is the subroutine GUVM.

The software designed to determine the Lk lines and their associated Mns is Fortran sub-

routine HSORT1 contained in file H:\CARR\MCARR.FOR or H:\CARR\MCARR1.FOR.

The reasoning behind the software is explained using (8 − 16). Starting with θ1, 2 , one

looks along the first row for θ1, j = θ1, 2 and equality in the corresponding ρ1, j = ρ1, 2 .

If such are found for j ≥ 3, then one need look no further; an Lk has been found. From

(12 − 13), we have θ1, 2 = θ1, 4 = θ1, 6 = −.5880 and ρ1, 2 = ρ1, 4 = ρ1, 6 = .2774. All

the subscripts indicate the Mns as shown in Table 2. There is no need to examine subse-

quent rows, for if another row element occurs with the above equalities, its Mn will already

have appeared in the subscripts obtained from the original row, in this case row one. For

example θ2, 4 = θ2, 6 = −.5880 and ρ2, 4 = ρ2, 6 = .2774. We continue with searches in the

first row of (15), but no more matches are found. In the third row we find two matches:

θ3, 4 = θ3, 5 = .7854 and ρ3, 4 = ρ3, 5 = 4.9497 that yield the Mns given in second row of

Table 2. The two Lks are ordered as noted above and listed in Table 2 as L1, L2.2

In HSORT1, numerical equalities for the elements θi, j and ρi, k are defined in terms of

an input epsilon, ε > 0 (as also used in (8-11)), as

| θi, j − θi, k | ≤ max(1, | θi, j |, | θi, k |) ε; (17)

similarly for the elements ρi, j and ρi, k , numerical equality occurs if

| ρi, j − ρi, k | ≤ max(1, ρi, j, ρi, k ) ε. (18)

Two references with an extensive discussion of HT are [6], [7].

III. TARGET ID USING THE HOUGH TRANSFORM

Two more complicated applications of HT are discussed here. In the first case, we consider

16 Mn points, as shown in Figure 4, and obtain L-lines using HSORT1. The input points,

Mns, are also given in Table 3.

Table 3. Listing of Mns of Figure 4

[ x1, x2, . . . , x16 ] = [ 1 5 6 3 0 7 3 3 0 5 3 7 5 0 2 5 ]

[ y1, y2, . . . , y16 ] = [ 1 7 1 4 7 10 1 7 0 2 3 7 5 10 0 0 ]

2Speed of computation was necessary for HSORT1; a faster intricate program, written by Russ Gnoffo, can be used instead

of HSORT1 if needed.

6
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Figure 4. Given Mns, (xn, yn) , n = 1, . . . , 16, in xyp

The corresponding curves in θρp for the Mns are shown in Figure 5. Note the relative

difficulty in reading the intersection points in θρp .
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Figure 5. Transforms of the Mns in Figure 4 to θρp

The Lk lines determined from the Mns given in Table 3, using HSORT1, are given in

Table 4.
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Table 4. Listing Output Eleven L−lines From Table 3 Input

L1→ N1 = 5, Mns on L1→ 1, 9, 11, 12, 13

L2→ N2 = 4, Mns on L2→ 1, 2, 4, 6

L3→ N3 = 4, Mns on L3→ 4, 7, 8, 11

L4→ N4 = 4, Mns on L4→ 3, 4, 5, 10

L5→ N5 = 4, Mns on L5→ 2, 10, 13, 16

L6→ N6 = 4, Mns on L6→ 2, 5, 8, 12

L7→ N7 = 3, Mns on L7→ 1, 3, 7

L8→ N8 = 3, Mns on L8→ 4, 14, 16

L9→ N9 = 3, Mns on L9→ 8, 13, 14

L10→ N10 = 3, Mns on L10→ 5, 9, 14

L11→ N11 = 3, Mns on L11→ 9, 15, 16

In order to simplify the notation, we have dropped the M prefix on the Mn points, so that,

for example, M1, M9, M11, M12, M13 for L1 appear as noted in Table 4.

The second application of this section involves extracting the outline of a house, composed

of straight lines, emersed in a maze of NR = 350 random points. The house outline is made

up of thirty Mns that determine five L-lines. The points are given by:

x = 1.0, y = 1.0, 1.2, 1.4, 1.6, 1.8

y = x + 1, x = 1.0, 1.2, 1.4, 1.6, 1.8, 2.0

y = 5− x, x = 2.2, 2.4, 2.6, 2.8

x = 3.0, y = 2.0, 1.8, 1.6, 1.4, 1.2

y = 1.0, x = 3.0, 2.8, 2.6, 2.4, 2.2, 2.0, 1.8, 1.6, 1.4, 1.2

(19)

The NR random points are taken from a Matlab routine based on normal distributions.

Therefore, using Matlab code:

mn = 350;

randn(′seed′, 1);
x = .55 + 2.35 ∗ abs(randn(1,mn));

randn(′seed′, 2);
y = .50 + 1.75 ∗ abs(randn(1,mn));

(20)

Figure 6 shows a plot of the 30 Mns and those random points in the interval 0.5 < x ≤ 3.5.

It is certainly difficult to identify the house outline (30 Mns) in Figure 6. Figure 7 shows the

same points with the Mn points darkened.
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Figure 6. A Plot of 30 Mns and a Subset of 350 Random Points
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Figure 7. A Plot of the Identical Data of Figure 6 with the 30 Mns Darkened

The input array (xi, yi), i = 1, . . . , 380 was arranged with the 30 Mns making up the

first 30 points of the array, followed by the NR random points, but the results, of course,

are independent of the order in which the input points are given. This is so because every

possible pair of points in the input array is treated.
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Calling on the Fortran subroutine HSORT1 to find all L-lines containing four or more

Mns, using as input the (x, y) of (19) and (20), the output is given in Table 5.

Table 5. Listing Output from Input Given by (19) and (20)

L1→ N1=11, Mns on L1→ 1, 21, 22, 23, 24, 25, 26, 27, 28, 29,3̇0

L2→ N2=6, Mns on L2→ 11, 12, 13, 14, 15, 16

L3→ N3=6, Mns on L3→ 6, 7, 8, 9, 10, 11

L4→ N4=6, Mns on L4→ 1, 2, 3, 4, 5, 6

L5→ N5=6, Mns on L5→ 16, 17, 18, 19, 20, 21

IV. EXTENSION OF THE HOUGH TRANSFORM TO CIRCULAR ARCS

In the previous section, using HT, it was shown that Mns to determine L-lines could be

extracted from a set M of points in xyp. The principle involved is simply that any straight

line in xyp can be defined by two parameters (θ, ρ in the HT case), so that examining every

pair of points in M and finding those pairs with the same θ, ρ establishes Mns that determine

an L-line.

In the case of circular arcs, we use the fact that a circle in the plane is uniquely defined by

three parameters. Therefore, to determine an L−arc , i.e., an arc of a circle (corresponding

to a straight line in HT case), one would look at all possible combinations of three points

from M and search for those particular three-point combinations that have the same values

for each of the three parameters. The Fortran software that accomplishes this is contained

in file DH.FOR. Subprogram DGXY generates M-sets for testing.

We use for the three parameters defining a circle, the center of the circle, (a, b), and its

radius r. Thus, the equation for a circle in xyp is

(x− a)2 + (y − b)2 = r2. (21)

The objective is to evaluate a, b, and r using three distinct points from M. The fact that a and

b occur nonlinearly presents no problem. Denote the three points by (x1, y1), (x2, y2), (x3, y3).

Substitute these quantities into (21) to obtain

(x1− a)2 + (y1− b)2 = r2, (22)

(x2− a)2 + (y2− b)2 = r2, (23)

(x3− a)2 + (y3− b)2 = r2. (24)

Then subtracting (22) from (23) and (22) from (24), one obtains, after cancelations:

2 (x2− x1) a + 2 (y2− y1) b = x22 − x12 + y22 − y12, (25)

2 (x3− x1) a + 2 (y3− y1) b = x32 − x12 + y32 − y12. (26)

10



NSWCDD/TR−08/136

Solving the last two equations for a and b gives

2 a =
[
(x22 + y22)(y3− y1)− (x12 + y12)(y3− y2)− (x32 + y32)(y2− y1)

]
/D, (27)

2 b =
[
(x22 + y22)(x1− x3) + (x12 + y12)(x3− x2) + (x32 + y32)(x2− x1)

]
/D, (28)

where different algebraic expressions for D are given by:

D =


(x2− x1)(y3− y1)− (x3− x1)(y2− y1) 6= 0,

x1(y2− y3) + x2(y3− y1) + x3(y1− y2) 6= 0,

y1(x3− x2) + y2(x1− x3) + y3(x2− x1) 6= 0.

(29)

If D = 0, then either the three input points lie on a straight line, or at least two of the

points are the same. For either of these inputs, no circle is determined.

The remaining unknown r is obtained from any one of (22)-(24), using a and b obtained

from (27) and (28).

The software that reflects this analysis is the subroutine CIR1(x1, y1, x2, y2, x3, y3, a, b, r, D).

Hence, to extract the circular arcs from M, the subroutine CIRSOR generates three arrays

U(i, j, k), V(i, j, k), and R(i, j, k) that are functions of triplets of all possible combinations of

three points from M, without repetition (of which there are N!/[3!(N-3)!]). So that for a

fixed i, j, k the element of each array is constructed by CIRSOR as:

U(i, j, k) = a, i = 1, . . . ,N− 2, j = i + 1, . . . ,N− 1, k = j + 1, . . . ,N,

V(i, j, k) = b, i = 1, . . . ,N− 2, j = i + 1, . . . ,N− 1, k = j + 1, . . . ,N,

R(i, j, k) = r2, i = 1, . . . ,N− 2, j = i + 1, . . . ,N− 1, k = j + 1, . . . ,N,

(30)

where CIRSOR calls CIR1 to find the elements a, b, r2 of U, V, R, respectively, corresponding

to each triplet of input. If D = 0, r is set to zero.

The similarity to (10) and (11) should be clear.

As a special case, file PTCIR.FOR contains Fortran software that finds L− lines each

with an attached L−arc at an endpoint. As an example, we consider M made up of a set of

NR=400 random points from normal distributions, a horizontal line L with NL=19 points,

and a circular arc, L−arc , with NC=10 points, that begins at the right end-point of L,

(y = 3, 1 ≤ x ≤ 3) and forms an arc of the circle: (x − 1)2 + (y − 4)2 = 5. Hence M

contains a total of N=429 points in xyp, where the Fortran 95 code that follows indicates

the generation of the NR=400 random points, followed by the NL=19 straight line points,

and ends by generating the ten L−arc points. The code that generates these points is carried
out by the subroutine GXYC, which follows.
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DIMENSION X1(429), Y1(429)

NR = 400

NL = 19

NC = 10

IR = 1 !Seed for random number generator.

IS = 2

CALLRNOR(IR,X1,NR,IER) !Subroutine RNOR taken from [5].

CALLRNOR(IS,Y1,NR,IES) !Random coordinates.

DO 5 I = 1,NR

X1(I) = 3.5*ABS(X1(I))

5 Y1(I) = 4. + Y1(I)

AO = 1.

BO1 = 3.

DT = (BO1 - AO)/NL

NR1 = NR + 1

X1(NR1) = AO + DT

Y1(NR1) = BO1

DO 10 I = NR1,NR+NL - 1

X1(I+1) = X1(I) + DT

10 Y1(I+1) = Y1(I)

PI = 3.14159265359

NRC = NR + NL + 1

NCI = (NC - 1)*2

PIN = PI/NCI

BO = 4.

RO =
√
5

THETA = ATAN2((BO1-BO),(BO1-AO))

DO 15 I = NRC,N

THETA = THETA + PIN

X1(I) = AO + RO*COS(THETA)

15 Y1(I) = BO + RO*SIN(THETA)

Figure 8 shows some of the random points and the points belonging to the straight line, but

the points belonging to the arc, although included, are not evident. Figure 9 has the same

points as Figure 8 with the straight line and circular arc points enhanced.
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Figure 8. A Plot of Random Data and Some Points Forming a Straight Line

with an Attached Circular Arc
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Figure 9. Same Plot as in Figure 8 with the Straight Line and Circular Arc Points Enhanced

The object of this simulation is now to extract the Mn points belonging to the L-line

using subroutine HSORT1 and the attached L−arc using subroutine HSORT2. The results

are given in Table 6.
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Table 6. Listing Output Using HSORT1 and HSORT2

***DOUBLE PRECISION PTCIRC.FOR *** JM= 0, MZ= 4

NR = 400, NL = 19, NC = 10, N = 429, AO=1, BO=4, RO=2.23607

1 19 (The N points of M are input for HSORT1.)

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419

******************************************

IX 419

1 10 (Only the N points of M and attached point 419 are input for HSORT2.)

420 421 422 423 424 425 426 427 428 429

2 6

123 154 189 239 291 298

3 6

53 180 190 233 306 329

In the first line of the table, JM is not relevant; MZ=4 indicates that only output with

at least four Mn’s will be given. The second line specifies the input for generating the test

data. The third line notes the first line of output, L1, using HSORT1, and indicates 19

points. The fourth line lists the 19 points. The sixth line indicates the point at which the

L-line and L−arc are attached. The seventh line gives the first line of output, with 10 points,

using HSORT2, referring to the L−arc . The eighth line specifically gives the 10 points. The

last four lines refer to L−arcs contained in the distribution of random points and attached

to point 419.

Note, if (xe,ye) denotes the last point of L, that all triplets of M chosen include (xe,ye).

Hence, only every pair of points of M, without repetition, make up the input together with

(xe,ye), rather than an independent triplet of (x,y) points. The software returns results more

quickly under these conditions.

In the final example of this section, it is required to find points belonging to three circular

arcs, three L−arcs , embedded in a set M also containing random points. This differs from the

previous example where the L−arc was attached to the L-line. Thus, here the three points

required to establish an L−arc are independent so that the size of the problem increases

significantly from an N-squared problem, as in the previous example, to an N-cubed problem.

We need to consider all possible combinations of the points of M taking three points at a

time without repetitions. The total number of such combinations is NT=N(N-1)(N-2)/6

rather than N(N-1)/2 as in the previous example where all possible pairs were considered.

File DH.FOR contains subroutine DGXY that constructs the simulation by specifying

the three L−arcs ; L− ai, a = aoi, b = boi, r = roi, i = 1, 2, 3. Thus
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L− a1 : x = ao1 + ro1 ∗ cos θ, ao1 = 1, bo1 = 4, ro1 = 4

y = bo1 + ro1 ∗ sin θ, 30 ≤ θ ≤ 100 (degrees), 11 plotted points.
(31)

L− a2 : x = ao2 + ro2 ∗ cos θ, ao2 = 3, bo2 = 4, ro2 = 3

y = bo2 + ro2 ∗ sin θ, 30 ≤ θ ≤ 150 (degrees), 21 plotted points.
(32)

L− a3 : x = ao3 + ro3 ∗ cos θ, ao3 = −1, bo3 = 4, ro3 = 3.5

y = bo3 + ro3 ∗ sin θ, −60 ≤ θ ≤ 60 (degrees), 16 plotted points.
(33)

Figures 10 and 11 show the points of M within the x and y intervals of the graphs where

N = 160 and NT = N(N− 1) (N− 2)/6 = 669920.
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Figure 10. A Plot of Random Data and Points Forming Three Circular Arcs
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Figure 11. Same Plot as in Figure 10 with Circular Arc Points Enhanced
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The extraction of the plotted points of the three L−arcs is carried out by the subroutine

CIRSOR in file DH.FOR. In more detail, the generation of the simulated data using DOXY

was done in the following order: First N (=160) random (x,y) points were generated and

stored in array AB; then alternating starting with location AB(5), a point from each of the

L−arcs specified in (31)-(33) was inserted into the AB overwriting those locations; so that

L− a1 is stored in AB(5),AB(8), . . . ,AB(35); L− a2 is stored in AB(6),AB(9), . . . ,AB(66);

La− 3 is stored in AB(7),AB(10), . . . ,AB(52).

The output form CIRSOR is shown in Table 7.

Table 7. Listing Output Using CIRSOR

NR = 112, NC = 48, N = 160. See (31)-(33) for L−arc points.
******************************************

TIME 29,

L− a1-> ICN(1) = 11, IC = 5 8 11 14 17 20 23 26 29 32 35

L− a2-> ICN(2) = 21, IC = 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66

L− a3-> ICN(3) = 16, IC = 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

V. EXTENSION OF THE HOUGH TRANSFORM TO ELLIPTICAL ARCS

We consider the equation for the ellipseE in the xy-plane given by

(x− a)2 + A(y− b)2 + Bxy + D = 0, T ≡ B2 − 4A < 0. (34)

There are five unknowns to determine: a, b, A, B,D. We use five (x, y) points onE to evaluate

the unknowns. Or, we can state the problem as: Given five points in the plane, what are the

values of the unknowns above such that the five points are onE? Note that if the inequality

in (34) is not satisfied, then other geometrical objects will be determined such as a hyperbola,

parabola, or straight line. However, our emphasis will be with ellipses.

Let the five points be denoted by (xk, yk), k = 1, ..., 5. Then four linear equations can be

generated for a, b,A,B after a2 and b2 are eliminated. Namely

2a (xk − x1) + A (y21 − y2k ) + C (yk − y1) + B (x1 y1 − xk yk) = x2k − x21, k = 2, ..., 5, (35)

where

b = C/(2A). (36)

By using the results of solving the linear system (35) with (36), D is evaluated from (34)

with, say, x = x1, y = y1.

Example (calculations carried out in double precision):
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SpecifyE by:

(x− 5)2 +
50

18
(y− 5)2 + 2.5xy− 94 4

9
= 0, T ≡ B2 − 4A = 6.25− 100/9 < 0. (37)

Thus,

a = 5, b = 5, A = 50/18, B = 2.5, D = −94 4
9
. (38)

The objective is to get good numerical approximations to these quantities by assigning

five points on E . Hence, using the five points onE , (0, 0), (2, 8.85078940), (4, 7.54511220),

(6, 6.03229152), (8, 4.17848880), we obtain from (35) the linear system:
2.00000000 −78.3364731 8.85078940 −17.7015788
4.00000000 −56.9287181 7.54511220 −30.1804488
6.00000000 −36.3885410 6.03229152 −36.1937491
8.00000000 −17.4597686 4.17848880 −33.4279104




2a

A

C

B

 =


4

16

36

64

 . (39)

The solution of (39) with (36), as obtained by subroutine ELLP in ELLP5.FOR, agrees with

the values of those quantities as given in (38) to within eight significant digits. Finally, using

those results in (34), with x1 = 0, y1 = 0, gives D with comparable accuracy. The center

point coordinates are given by (xc, yc) = (2A[Bb − 2a]/T, 2[a − 2Ab]/T) = (−20/7, 44/7).
A plot ofE is shown in Figure 12 with its center and with the five specified points.
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Figure 12. Plot of E with Five Specified Points in xyp
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VI. FINDING COORDINATES OF A TARGET FROM TDOAs

The TDOAs are used to determine the coordinates (Tx,Ty) of a target point T, by using

a pulse emitted by a transmitter.

Given a transmitter T1, located at (T1x, T1y) and three sensors, S1k, k=1,2,3 with

locations (S1kx, S1ky). See Figure 13.

x

y

S11

S12

S13

T

T1

Figure 13. Multistatic Network with One Transmitter and Three Sensors

A pulse P1 is sent from T1 to T and received from T at S11, S12, S13. Let the time taken

for each of these paths be denoted by T1T, TS11, TS12, and TS13, respectively. Then we

can define times of arrival TOA11 and TOA12 by

TOA11 ≡ T1T + TS11, (40)

TOA12 ≡ T1T + TS12. (41)

Subtracting (40) from (41) defines TDOA1,

TDOA1 ≡ TOA12− TOA11 = TS12− TS11. (42)

Also,

TOA13 ≡ T1T + TS13. (43)

Then, subtracting (40) from (43) defines TDOA2 accordingly

TDOA2 ≡ TOA13− TOA11 = TS13− TS11. (44)

We are now in position to achieve the objective of determining the target point coordinates

(Tx,Ty). Let c denote the speed of sound in meters/second,3 and note that

c ∗ TS1k =
√
(Tx− S1kx)2 + (Ty− S1ky)2, k = 1, 2, 3. (45)

3c = 331.3 ∗√1 + X/273.15, X = 5/9 ∗ (F− 32), F ≡ DegreesFahrenheit.
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Then from (42) and (44) we have two nonlinear equations to solve for (Tx,Ty), namely

c ∗ TDOA1 =
√
(Tx− S12x)2 + (Ty− S12y)2 −

√
(Tx− S11x)2 + (Ty− S11y)2, (46)

c ∗ TDOA2 =
√
(Tx− S13x)2 + (Ty− S13y)2 −

√
(Tx− S11x)2 + (Ty− S11y)2. (47)

Note that these equations are independent of the location of T1.

In Fortran file EXLAST2.FOR, the subroutine HBRD [5] is used to solve (46) and (47)

for Tx and Ty. A numerical example, assuming acoustical instruments, with distances in

meters and velocity in meters/seconds, follows. Input is:

TEMP = 70oF, c = 343.8644,

S11x = 3D3, S11y = 0, S12x = 5.71D3, S12y = 3.525D3, S13x = 1D3, S13y = 4D3, 4

TDOA1 = 1D− 1, TDOA2 = 1.52D− 1.

With an initial guess of Tx = Ty = 1D3, one obtains, as output, the final target coordinates:

Tx = 3.2466935D3, Ty = 2.5890217D3.

A second numerical example is based on Jack Carr’s experimental setup, where a con-

straint is imposed, i.e.,
Ty = a ∗ Tx + b, (a, b given). (48)

In this case only two sensors are required resulting in one TDOA.

TEMP = 70oF, c = 343.8644, a = b = 1,

S11x = 3D3, S11y = 0, S12x = 5.71D3, S12y = 3.525D3,

TDOA1 = 8D− 2.

Using Fortran subroutine HBRD in EXCONST.FOR, with an initial guess of Tx = 1D3, one

obtains the final target coordinates:

Tx = 2.87598D3, Ty = 2.876.98D3.

In the third and final example, RF signals are transmitted that travel at the speed of

light, namely c = 2.9979248D5 km/sec; the analysis would hold for acoustic signals as well.

Three sensors and one transmitter make up the network to locate a target in 3-space with a

constraint. The Earth is assumed to be spherical with radius RE = 6378.137 km.

The method of solution to determine the target coordinates (x, y, z)5 is different than the

one used in the previous examples. It is described in the Ho-Chan paper [4].

Specifically, our objective is to develop Fortran 95 software that is based on one of the

results of the Ho-Chan paper, [4]. The software will output the coordinates of a target from

the use of three sensors, whose three-dimensional position coordinates are known, with the

constraint that the normal distance from the center of the Earth to the target, r, is also

4Numerical values are specified in Fortran notation. For example, 2.3D − 3 ≡ 2.3 ∗ 10−3 = .0023. All computations are

carried out in double precision.
5Hereafter the notation of [4] is used, including bold upper case letters to denote matrices and bold lower case letters to

denote vectors.
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known. As noted in [4], such a constraint has practical application as, for example, a target

sitting on the Earth’s surface. The constraint allows the location of the target with only two

measurements of TDOAs.

The location of the target is denoted by u = [x, y, z]T and the locations of the three

sensors are specified by sk = [xk, yk, zk]
T, k = 1, 2, 3. Thus, the distance between target

and sensor k is:

rk = |sk − u| =
√
(xk − x)2 + (yk − y)2 + (zk − z)2, k = 1, 2, 3. (49)

To clarify the meaning of TDOA here, consider an Earth station from which a signal, at

arbitrary time=0, moving at the speed of light, c, travels to the target and the reflected signal

then travels to each of the three sensors (It is assumed that not any three of {0, s1, s2, s3}
lie on a straight line; the Earth’s center is at 0.). Let TOAk denote the time of arrival of the

signal at sensor k. Then let

dk,1 = TDOAk,1 = TOAk − TOA1, k = 2, 3, so that

rk,1 = cdk,1 = rk − r1, k = 2, 3. (50)

Note that the constraint can also be written as

uTu = (RE +D)2 = r2, (51)

where RE ≡ spherical Earth′s radius, D ≡ distance above theEarth along u.

From this point, we proceed mathematically, following [4], toward the objective of finding

u, given: sk, TDOA2,1, TDOA3,1, and r. Rewriting (50) as rk,1 + r1 = rk and squaring both

sides of this relation gives

r2k,1 + 2rk,1r1 + r21 = r2k = (sk − u)T(sk − u) = r2 + sTk sk − 2sTku, k = 2, 3, (52)

where r1 from (49) gives

r21 = r2 + sT1 s1 − 2sT1 u. (53)

Replacing r21 on the left side of (52) by (53) gives

r2k,1 + 2rk,1r1 = sTk sk − sT1 s1 − 2(sk − s1)Tu, k = 2, 3. (54)

Equations (53) and (54) represent a set of linear equations for u in terms of the variable r1.

In matrix notation we have

Gu = h, (55)

where

G = −2

 sT1
sT2 − sT1
sT3 − sT1

 , (56)
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h = H

1r1
r21

 ≡
 −r2 − sT1 s1 0 1

r22,1 − sT2 s2 + sT1 s1 2r2,1 0

r23,1 − sT3 s3 + sT1 s1 2r3,1 0


1r1
r21

 . (57)

As noted in [4], the existence of G−1 requires that any three of (0, s1, s2, s3) cannot lie on a

straight line. In addition, the three sensors should have sufficient spatial separation to avoid

ill-conditioning of G. Hence, from (55),

u = G−1h = Q [ 1, r1, r
2
1 ]

T, (58)

where

Q ≡ G−1H. (59)

Substituting into (51), we have

uTu− r2 = [ 1, r1, r
2
1 ]Q

TQ [ 1, r1, r
2
1 ]

T − r2 = 0. (60)

which represents a quartic polynomial in r1. Let P denote a symmetric matrix such that

P ≡

p11 p12 p13
p12 p22 p23
p13 p23 p33

 ≡ QTQ (61)

Expanding (60) and using (57), (59), and (61), we obtain the coefficients of the quartic F.

Thus,

F(r1) ≡ ( p11 − r2 ) + 2 p12 r1 + ( 2 p13 + p22 )r
2
1 + 2p23 r

3
1 + p33 r

4
1 = 0 (62)

We are interested in the positive roots of F. Using one such root in (58) gives a set of

possible target coordinates. In case there is more than one positive root, as pointed out in

[4], extraneous roots will not satisfy (50). However, it still can happen that more than one

positive root satisfies (50), in which case the user must decide by other means which is the

meaningful one for his application. The numerical example that follows reflects such a case.

The file CHAN.FOR uses four subroutines from the NSWC Library of Mathematical Sub-

routines, [5]:

(1) CROUT (Input: G, output: G−1 stored in G.)

(2) MTMS (Multiplies G−1,H, stores result in Q.)

(3) TMPROD (Input: Q, output: QTQ stored in QT.)

(4) DRPOLY (Input: Coefficients of polynomial F (elements of QT, see (62)) stored in T1,

output: real parts of roots of F in array ZR and imaginary parts in array ZI.)

We use c (speed of light)= 2.9979248D5 km/sec, RE (radius of the Earth )= 6378.137 km.
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Name of Fortran 95 file: Chan.for (Contains main program plus the four subroutines

mentioned above, including their supporting routines.)

Input: D (distance above the Earth of the target)= 1 km

s1 = [0.0 0.0 6378.137]T

s2 = [3189.069 3189.069 4510.024]T

s3 = [2761.814 4783.603 3189.069]T

TDOA1,2 = 2D− 4

TDOA1,3 = 5D− 4

r = 6379.137

(63)

Intermediate Results:

G =

−7.81071D− 13 0.00000D0 −1.27563D4
−6.37814D3 −6.37814D3 3.73623D3

−5.52363D3 −9.56721D3 6.37814D3


H =

−8.13740D7 0.00000D0 1.00000D0

3.59502D3 1.19917D2 0.00000D0

2.24689D4 2.99792D2 0.00000D0


G−1 =

 1.50016D− 5 −3.70959D− 4 2.47306D− 4

−6.09230D− 5 2.14173D− 4 −2.47306D− 4

−7.83928D− 5 2.27139D− 20 −1.51426D− 20

 (64)

Q =

−1.21652D3 2.96562D− 2 1.50016D− 5

4.95277D3 −4.84574D− 2 −6.09230D− 5

6.37914D3 −1.81586D− 18 −7.83928D− 5


QTQ =

 6.67032D7 −2.76076D2 −8.20066D− 1

−2.76076D2 3.22761D− 3 3.39706D− 6

−8.20066D− 1 3.39706D− 6 1.00821D− 8


Det = −3.28991D11 (Determinant of G)

F(r1) =
5∑

k=1

T1(k) r5−k1 = 0, (65)

where
T1(1) = 1.00821D − 8

T1(2) = 6.79413D − 6

T1(3) = −1.63690D0
T1(4) = −5.52151D2
T1(5) = 2.60098D7.

(66)
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With F as given in (65), DRPLOY finds the roots:

ZR(1) = 4.05816D3, ZI(1) = 0.0

ZR(2) = −4.39528D3, ZI(2) = 0.0

ZR(3) = 1.18592D4, ZI(3) = 0.0

ZR(4) = −1.21960D4, ZI(4) = 0.0.

(67)

Output:

We are only interested in the positive roots ZR(1) and ZR(3). Noting from (58) that

u = Q[1, r1, r
2
1]
T (68)

there are two solutions, namely

u = [−8.49113D2, 3.75280D3, 5.08811D3]T (69)

u = [1.24501D3, −4.19015D3, −4.64607D3]T. (70)

Both solutions, using (49), satisfy (50) with

r2,1 = 59.95848, r3,1 = 149.8962. (71)

Thus, neither positive root of (65) is extraneous and, therefore, both solutions hold.
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APPENDIX A

LIST OF FORTRAN 95 SUBPROGRAMS

1. MCARR.FOR or MCARR1.FOR−File containing programs to generate L−lines from

an M-set, based on the Hough Transformation.

(a)GUVM−Subroutine that generates an M-set of points to test HSORT1.

(b)HSORT1−Subroutine that finds L−lines in an M-set of points.

(c)MATPLO−Generates a Matlab M file for plotting results from HSORT1.

(d)HSORTI−Sorting routine from Mathlib, [5] of the main text.

2. DH.FOR−File containing subprograms to generate L−arcs from an M-set.

(a)DGXY−Subroutine generating an M-set of points for testing subroutine CIRSOR.

(b)CIR1−Subroutine that finds parameters defining a circle from three M-points.

(c)CIRSOR−Subroutine that finds L−arcs from an M-set of points.

(d)MATPLX−Generates an Matlab M file for plotting results from CIRSOR.

(e)LE−Supporting routine for CIRSOR. See Appendix B.

(f)LCAL1−Supporting routine for LE.

(g)RNORM−Normal random number generating routine used in DGXY, taken from

[5] of the main text.

(h)RCIR1−Supporting routine for RNORM.

3. PTCIRC.FOR−File containing subprograms to generate L−lines, each with an attached
circular arc at one endpoint.

(a)GXYC−Generates an M-set of points to test HSORT1 together with HSORT2.

(b)HSORT1−See above.
(c)HSORT2−From an M-set, finds a circular arc attached to an endpoint of an L−line.
(d)GUV−Subroutine that generates the parameters of an L−line of an M-set.

(e)GUVR−Subroutine that generates the parameters of a circular arc attached to an

L−line.
(f)CIR−Subroutine, essentially the same as CIR1 above.

(g)MATPLO−Generates a Matlab M file for plotting results from GXYC.

(h)RNORM−See above.
(i)RCIR1−See above.

4. ELLP5.FOR−File containing subprograms to find parameters defining an ellipse, given

five points in the xy-plane.

(a)ELLPT−Given ellipse parameters and ellipse coordinates x1, y1, x2, ELLPT finds

two y-coordinates on the ellipse with x2 as the x-coordinate.
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(b)ELLP−Given five points in the plane, ELLP determines the ellipse, E, with those

points on E, by outputting the parameters defining E.

(c)CROUT−Subroutine that solves a linear system, with real coefficients, by the Crout

procedure. Contained in [5] of the main text.

(d)ROTA−Gives the angle of rotation of the xy-axes so that the xy term in (34) of

the main text is eliminated. The output also includes the parameters defining E in the

rotated coordinates.

(e)RNORM−See above.
(f)RCIR1−See above.

5. EXLAST2.FOR−File containing subprograms for determining target coordinates from

a specified set of sensors and a transmitter.

(a)HBRD−Subroutine that solves a set of nonlinear functions. Contained in [5] of the

main text.

6. CHAN.FOR−File containing subprograms for using the Chan method to determine

three-dimensional target coordinates using three sensors and a constraint.

(a)CROUT−See above.
(b)MTMS−Subroutine, from [5] of the main text, for multiplying two real matrices.

(c)TMPROD−Subroutine, from [5] of the main text, to produce AT B given real ma-

trices A and B.

(d)DRPOLY−Subroutine, from [5] of the main text, to produce the roots of a polyno-

mial with real coefficients.
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APPENDIX B

A RESULT USED IN SUBROUTINE LCAL1 CALLED BY SUBROUTINE LE
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APPENDIX B

A RESULT USED IN SUBROUTINE LCAL1 CALLED BY SUBROUTINE LE

This analysis is used in subroutine LE of file HCIR.FOR and the double precision version

DHCIR.FOR. It is also used in the latest circular arc routine DCIR3.FOR. LCAL1 replaces

the subroutine IJKL, which is much slower.

We have the loops:

L = 0

DO 5 I=1,N-2 !N IS TOTAL NO. OF (X,Y) POINTS. SEE ROUTINE CIRSOR

DO 5 J=I+1,N-1

DO 5 K=J+1,N

L = L + 1

5 CONTINUE

PROBLEM: Given N, I, J, K. Find L without running through 3 LOOPS.

For example: N=10, I=2, J=5,K=6; FIND L. It is L=50.

We use:
n∑

m=1

m = n(n + 1)/2,
n∑

m=1

m2 = n(n + 1)(2n + 1)/6. (B-1)

We first find the contribution to L from I; call it LI. Then

LI =
1

2

Î∑
m=1

(N−m)(N−m− 1), Î = I− 1. (B-2)

2 LI = ÎN2 − Î N (̂I + 1) +
1

6
Î (̂I + 1)(2 Î + 1)− Î N +

1

2
Î (̂I + 1), (B-3)

2 LI = ÎN2 − Î N (̂I + 2) +
1

6
Î (̂I + 1)(2 Î + 1) +

1

2
Î (̂I + 1), (B-4)

2 LI = ÎN (N− I− 1) +
1

3
Î I (I + 1), (B-5)

LI =
Î [ 3N (N− I− 1) + I (I + 1)]

6
. (B-6)

For a fixed I, the contribution to L from J and K, denoted by LJK, is given by

LJK =

J−1∑
n=I+1

(N− n) + K− J, (B-7)

LJK = (J− I− 1)N − J(J− 1)/2 + I(I + 1)/2 + K− J, (B-8)

LJK = [(J− I− 1)(2N− I− J)]/2 + K− J. (B-9)
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Hence

L = LI + LJK. (B-10)

Completing the numerical example above, we get for N = 10, I = 2, J = 5, K = 6;

LI = 36, LJK = 14, L = 50.
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